176 research outputs found

    No more time to stay ‘single’ in the detection of Anisakis pegreffii, A. simplex (s. s.) and hybridization events between them: a multi-marker nuclear genotyping approach

    Get PDF
    A multi-marker nuclear genotyping approach was performed on larval and adult specimens of Anisakis spp. (N = 689) collected from fish and cetaceans in allopatric and sympatric areas of the two species Anisakis pegreffii and Anisakis simplex (s. s.), in order to: (1) identify specimens belonging to the parental taxa by using nuclear markers (allozymes loci) and sequence analysis of a new diagnostic nuclear DNA locus (i.e. partial sequence of the EF1 α−1 nDNA region) and (2) recognize hybrid categories. According to the Bayesian clustering algorithms, based on those markers, most of the individuals (N = 678) were identified as the parental species [i.e. A. pegreffii or A. simplex (s. s.)], whereas a smaller portion (N = 11) were recognized as F1 hybrids. Discordant results were obtained when using the polymerase chain reaction–restriction fragment length polymorphisms (PCR–RFLPs) of the internal transcribed spacer (ITS) ribosomal DNA (rDNA) on the same specimens, which indicated the occurrence of a large number of ‘hybrids’ both in sympatry and allopatry. These findings raise the question of possible misidentification of specimens belonging to the two parental Anisakis and their hybrid categories derived from the application of that single marker (i.e. PCR–RFLPs analysis of the ITS of rDNA). Finally, Bayesian clustering, using allozymes and EF1 α−1 nDNA markers, has demonstrated that hybridization between A. pegreffii and A. simplex (s. s.) is a contemporary phenomenon in sympatric areas, while no introgressive hybridization takes place between the two species

    Dynamics of River Mouth Deposits

    Get PDF
    Bars and subaqueous levees often form at river mouths due to high sediment availability. Once these deposits emerge and develop into islands, they become important elements of the coastal landscape, hosting rich ecosystems. Sea level rise and sediment starvation are jeopardizing these landforms, motivating a thorough analysis of the mechanisms responsible for their formation and evolution. Here we present recent studies on the dynamics of mouth bars and subaqueous levees. The review encompasses both hydrodynamic and morphological results. We first analyze the hydrodynamics of the water jet exiting a river mouth. We then show how this dynamics coupled to sediment transport leads to the formation of mouth bars and levees. Specifically, we discuss the role of sediment eddy diffusivity and potential vorticity on sediment redistribution and related deposits. The effect of waves, tides, sediment characteristics, and vegetation on river mouth deposits is included in our analysis, thus accounting for the inherent complexity of the coastal environment where these landforms are common. Based on the results presented herein, we discuss in detail how river mouth deposits can be used to build new land or restore deltaic shorelines threatened by erosion

    Mass of genes rather than master genes underlie the genomic architecture of amphibian speciation.

    Get PDF
    The genetic architecture of speciation, i.e., how intrinsic genomic incompatibilities promote reproductive isolation (RI) between diverging lineages, is one of the best-kept secrets of evolution. To directly assess whether incompatibilities arise in a limited set of large-effect speciation genes, or in a multitude of loci, we examined the geographic and genomic landscapes of introgression across the hybrid zones of 41 pairs of frog and toad lineages in the Western Palearctic region. As the divergence between lineages increases, phylogeographic transitions progressively become narrower, and larger parts of the genome resist introgression. This suggests that anuran speciation proceeds through a gradual accumulation of multiple barrier loci scattered across the genome, which ultimately deplete hybrid fitness by intrinsic postzygotic isolation, with behavioral isolation being achieved only at later stages. Moreover, these loci were disproportionately sex linked in one group (Hyla) but not in others (Rana and Bufotes), implying that large X-effects are not necessarily a rule of speciation with undifferentiated sex chromosomes. The highly polygenic nature of RI and the lack of hemizygous X/Z chromosomes could explain why the speciation clock ticks slower in amphibians compared to other vertebrates. The clock-like dynamics of speciation combined with the analytical focus on hybrid zones offer perspectives for more standardized practices of species delimitation

    Large‐Scale Scour in Response to Tidal Dominance in Estuaries

    Get PDF
    Channel beds in estuaries and deltas often exhibit a local depth maximum close to the river mouth. There are two known mechanisms of large-scale (i.e., >10 river widths along-channel) channel bed scours: width constriction and draw-down during river discharge extremes, both creating flow acceleration. Here, we study a potential third mechanism: tidal scour. We use a 1D-morphodynamic model to reproduce tidal dynamics and scours in estuaries that are in morphologic equilibrium. A morphologic equilibrium is reached when the net (seaward) sediment transport matches the upstream supply along the entire reach. The residual (river) current and river-tide interactions create seaward transport. Herein, river-tide interactions represent the seaward advection of tide-induced suspended sediment by the river flow. Tidal asymmetry typically creates landward transport. Scours form when tidal flow is amplified through funneling of tidal energy. Scours simultaneously reduce the residual (river) current and the river-tide interaction contribution to sediment transport, thereby maintaining morphologic equilibrium. When tidal influence is relatively large, and when channel convergence is strong, an equilibrium is only obtained with a scouring profile. We propose a predictor dependent on the width convergence, quantified as SB, and on the ratio between the specific peak tidal discharge at the mouth and the specific river discharge at the landward boundary (qtide/qriver). Scours develop if (qtide/qriver)/SB exceeds 0.3. Scour conditions were found to occur globally across a range of scales, which allows its prediction in estuaries under future changes

    The distributions of the six species constituting the smooth newt species complex (Lissotriton vulgaris sensu lato and L. montandoni) – an addition to the New Atlas of Amphibians and Reptiles of Europe

    Get PDF
    The ‘smooth newt’, the taxon traditionally referred to as Lissotriton vulgaris, consists of multiple morphologically distinct taxa. Given the uncertainty concerning the validity and rank of these taxa, L. vulgaris sensu lato has often been treated as a single, polytypic species. A recent study, driven by genetic data, proposed to recognize five species, L. graecus, L. kosswigi, L. lantzi, L. schmidtleri and a more restricted L. vulgaris. The Carpathian newt L. montandoni was confirmed to be a closely related sister species. We propose to refer to this collective of six Lissotriton species as the smooth newt or Lissotriton vulgaris species complex. Guided by comprehensive genomic data from throughout the range of the smooth newt species complex we 1) delineate the distribution ranges, 2) provide a distribution database, and 3) produce distribution maps according to the format of the New Atlas of Amphibians and Reptiles of Europe, for the six constituent species. This allows us to 4) highlight regions where more research is needed to determine the position of contact zones

    A rapid rate of sex-chromosome turnover and non-random transitions in true frogs.

    Get PDF
    The canonical model of sex-chromosome evolution predicts that, as recombination is suppressed along sex chromosomes, gametologs will progressively differentiate, eventually becoming heteromorphic. However, there are numerous examples of homomorphic sex chromosomes across the tree of life. This homomorphy has been suggested to result from frequent sex-chromosome turnovers, yet we know little about which forces drive them. Here, we describe an extremely fast rate of turnover among 28 species of Ranidae. Transitions are not random, but converge on several chromosomes, potentially due to genes they harbour. Transitions also preserve the ancestral pattern of male heterogamety, in line with the 'hot-potato' model of sex-chromosome transitions, suggesting a key role for mutation-load accumulation in non-recombining genomic regions. The importance of mutation-load selection in frogs might result from the extreme heterochiasmy they exhibit, making frog sex chromosomes differentiate immediately from emergence and across their entire length
    • 

    corecore